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1. 

Among the different techniques proposed for damage detection using changes in measured
modal parameters, the damage index method was found to be the most effective in an
experimental investigation on comparative evaluation of these techniques [1]. The damage
index algorithm is based on the observation that the change in modal strain energy of one
or more modes was a sensitive indicator of damage. An expression for the index was first
developed for linear elastic beam structures [2] and subsequently for plate-type structures
[3]. The only modal parameter that is required for using this technique is the mode shape.
The method requires only that the mode shapes be normalized consistently, but does not
require mass normalized modes. This makes it possible to use this method if ambient
excitation tests were used for modal parameter identification.

For beams and plates, only one degree of freedom is required for expressing the damage
index. This is the displacement component normal to the beam’s neutral plane or the
plate’s surface. This fact is quite significant because the test measurements are
dependent on which degrees of freedom need to be instrumented and recorded. Having
to measure only one component greatly simplifies the modal testing aspect. In the case of
cylindrical shells, the general expression for the strain energy is a function of all three
components of the displacement of the mid-surface. These are the longitudinal,
circumferential and radial displacement components. For the most general situation, these
three components would have to be measured in tests making the testing effort rather
expensive.

However, for thin shells with a length much greater than the radius, certain
approximations could be made. Previous work by others on shell theories has justified
assuming the hoop strain and shear strain at mid-surface to be zero. This assumption
results in relating some of the derivatives of one displacement component to that of
another. Furthermore, the assumed form for the mode shapes, previously developed by
other investigators, enables expressing all the three displacement components in terms of
a single function of the axial co-ordinate. Thus, it is possible to derive an expression for
the damage index that requires the measurement of only the radial component of shell
vibrations.

2.       

Consider the free vibrations of a cylindrical shell of mean radius R, uniform thickness
h, and length l. It is assumed the shell is thin, i.e., h/R is small. The elastic modulus
and the Poisson ratio are denoted E and n, respectively. In the cylindrical co-ordinate
system, the displacement components are given by (u, v, w), in the (x, u, r) directions,
respectively.
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An expression for strain energy of the cylindrical shell is given by [4]
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where the subscript ,x denotes partial differentiation with respect to x and so on.
This expression for strain energy is derived assuming sz , oxr and our are zero. To further
simplify the problem, it is assumed, following Sharma and Johns [5], that the hoop strain,
ou , and shear strain, oux , at the mid-surface are also zero. Then the above expression for
strain energy reduces to
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The modes of free vibration of the shell are characterized by the number of circumferential
waves, i, and the number of axial half-waves, j. The mode shape associated with any
particular values of i (i=2, 3, 4, . . . ) and j ( j=1, 2, 3, . . . ) is characterized by the
following midsurface deformations [5, 6]:

uij =−
1
i2

Rf'j cos iu cos vijt, vij =−
1
i
fj sin iu cos vij cos vijt,

wij =fj cos iu cos vijt, (2)

where fj is a function only of the axial co-ordinate, x, and is associated with the jth axial
half-wave, and vij is a natural frequency associated with i and j. The prime denotes the
first derivative. We note that for the mode shapes defined by equation (2), it is necessary
only to measure the radial component of displacement from which the other two
components could be derived. From equations (1) and (2), we could obtain the modal
strain energy associated with (i, j) as
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where i=2, 3, 4, . . . , j=1, 2, 3, . . . , and D=Eh3/12(1− n2).
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We subdivide the shell into a number of small segments to facilitate localization of
damage. Let Na be the number of axial segments and Nu the number of circumferential
segments. We consider a segment defined by xn E xE xn+1, um E uE um+1, where
n=1, 2, . . . , Na , m=1, 2, . . . Nu and

um =(2p/Nu)(m−1), um+1 = (2p/Nu )m, xn =(l/Na )(n−1), xn+1 = (l/Na )n.

The modal strain energy in this segment is given by

01+
12
i4

R2

h21w2
ij,xx +01− i2

R4 1w2
ij

Uijmn =
Dmn

2 g
xn+1

xn
g

um+1

um

G
G

G

G

G

K

k
+

2n

R2 (1− i2)wijwij,xx +
2(1− n)

R2

(i2 −1)2

i4
w2

ij,xu

G
G

G

G

G

L

l

R du dx, (4)

where Dmn is the flexural rigidity of the shell segment. Quantities pertaining to this segment
are indicated by the subscripts mn. The subscripts ij denote quantities pertaining to the
mode characterized by i and j.

In view of equation (4), the modal strain energy for the entire shell could be written as

Uij = s
Nu

m=1

s
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n=1

Uijmn . (5)

We define Fijmn as the ratio of Uijmn to Uij . It is assumed that the shell is subdivided into
sufficiently large number of segments so that Fijmn�1. By definition,
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All the above expressions pertain to the undamaged shell. Similar expressions for the
damaged shell could be written in terms of the corresponding mode shape defined by w*ij .
The expressions for the damaged shell are indicated by the superscript asterisk. Following
the method proposed in reference [1] for deriving the damage index for beams, we define
the damage index for the segment mn as

bijmn =
f *ijmn

fijmn
, (7)

where
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and
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with
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the asterisk denoting quantity pertaining to damaged state.
If a single mode is used for localizing damage, (i.e., for given i and j), then the damage

index, bijmn , is computed for each of the (Na ×Nu ) number of segments. If more than one
mode is used, then we define the index, bmn , as
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and bmn is computed for each of the segments. In either case, it is assumed that the
distribution of the index over the segments of the shell is represented by a normal
distribution. Then the normalized damage index is defined, following reference [1], as

z=
(b− b�)

s
, (13)

where b stands for either bijmn or bmn , the overbar denotes the mean and the s denotes the
standard deviation. A statistical decision making procedure similar to that described in
reference [2] could be employed to determine the threshold value of z that indicates
damage.

3.   

The inputs to the algorithm are as follows:

(1) The shell geometry. The radius, length and thickness of the shell and a table of
co-ordinates of the reference and response measurement points, and their connectivity as
defined for the tests. During the performance of the vibration tests, the measurement points
are usually regularly spaced, with (Ma +1) parallel to the axis and Mu along the
circumference. Relative to the grid for damage detection, Ma�Na and Mu�Nu .

(2) The files containing the mass-normalized mode shapes, obtained as a result of the
experimental modal analysis. Since only the radial component of motion is measured, each
mode shape is given as a table of values of the radial component at each of the
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measurement points. Two sets of files are required, one from the baseline tests (before
damage occurred) and the other from the post-damage tests.

(3) The Poisson ratio for the shell material, the only elastic property that explicitly occurs
in the expression for the damage index, the elastic modulus having been cancelled out.

Most of the commercially available experimental modal analysis software allows for
writing the modal results in ASCII tables. Therefore, the above input information is
assumed to be available in text files, readable across platforms.

The first task is to perform an interpolation of any given mode shape to obtain mode
shape vectors at each of the (Na +1) points along the longitudinal direction and Nu points
along the circumference, given the experimental mode shape at (Ma +1) points along the
longitudinal direction and Mu points along the circumference.

The mode shapes are functions of x and u. However, from equation (2), it may be seen
the mode shape could be expressed in the form fj (x) cos (iu+ a), where i, j and a are
constants. The mathematical expression for fj (x) is same as that for the mode shapes of
beams of the same boundary conditions [6]. Since it was found, in the investigations
reported in reference [1], that a cubic polynomial fit gave a better means for interpolation
than a cubic spline, the former is used for interpolation.

Thus, for a given mode, the mode shape is expressed locally as a product of a cubic
polynomial and a cosine and the mode shape data is fitted to the above expression from
which interpolated values of the mode shape and its derivatives, involved in equations (10)
and (11), are obtained and tabulated at each of the damage-detection nodes.

This tabulated data is then used to compute the damage index for each segment of the
shell using equations (7)–(13).

4.  

The validity of the proposed method remains to be tested with appropriate experiments.
Lab-scale circular cylindrical shells could be modal-tested both before and after a known
flaw is introduced. The results of the experimental modal analysis will provide the input
for the algorithm. Mathematical analysis packages such as MATLAB could be used to
implement the algorithm. If the location of the flaw is correctly identified, additional tests
with different flaw sizes could be performed to determine the sensitivity of the proposed
technique.
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